Skip to main content
Log in

Fe2O3/N-doped carbon-modified SiOx particles via ionic liquid as anode materials for Li-ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

SiOx is considered a promising alternative anode material for Li-ion batteries because of its higher theoretical capacity and safety compared with those of carbonaceous materials. In this study, SiOx with N-doped carbon containing Fe2O3 (Fe2O3/N-C@SiOx) was synthesized through mechanical milling, and its electrochemical properties and applicability as a stable anode material for Li-ion batteries were evaluated. Characterization data show that silicon, oxygen, carbon, nitrogen, and iron are shown to be uniformly distributed in the particles, which consist of amorphous SiO and N-doped amorphous carbon containing Fe2O3· Fe2O3 and N-doped carbon synergistically act as a reinforcing matrix that can mitigate internal breakdown between particles due to the volume expansion of the SiOx active materials while increasing electrical conductivity. As a result, Fe2O3/N-C@SiOx delivers a reversible capacity of 883 mA h g−1 at 100 mA g−1 for up to 100 cycles, corresponding to a capacity retention of 77%. Furthermore, it attains high reversible capacities of 671 and 415 mA h g−1 at 1000 and 3000 mA g−1, respectively, which are more than twice as high as that of bare SiOx (336 mA h g−1) measured at 1000 mA g−1. These findings demonstrate the potential of Fe2O3/N-C@SiOx particles as an alternative anode material for rechargeable batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zubi G, Dufo-López R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: State of the art and future perspectives. Renew Sustainable Energy Rev 89:292–308. https://doi.org/10.1016/j.rser.2018.03.002

    Article  Google Scholar 

  2. Miao Y, Hynan P, Jouanne AV, Yokochi A (2019) Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 12:1074. https://doi.org/10.3390/en12061074

    Article  CAS  Google Scholar 

  3. Mohamed N, Allam NK (2020) Recent advances in the design of cathode materials for Li-ion batteries. RSC Adv 10:21662–21685. https://doi.org/10.1039/D0RA03314F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hwang I, Lee CW, Kim JC, Yoon S (2012) Particle size effect of Ni-rich cathode materials on lithium ion battery performance. Mater Res Bull 47:73–78. https://doi.org/10.1016/j.materresbull.2011.10.002

    Article  CAS  Google Scholar 

  5. Sa Q, Heelan JA, Lu Y, Apelian D, Wang Y (2015) Copper impurity effects on LiNi1/3Mn1/3Co1/3O2 cathode material. ACS Appl Mater Interfaces 7:20585–20590. https://doi.org/10.1021/acsami.5b04426

    Article  CAS  PubMed  Google Scholar 

  6. Cunha RP, Lombardo T, Primo EN, Franco AA (2020) Artificial intelligence investigation of NMC cathode manufacturing parameters interdependencies. Batteries & Supercaps 3:60–67. https://doi.org/10.1002/batt.201900135

    Article  Google Scholar 

  7. Asenbauer J, Eisenmann T, Kuenzel M, Kazzazi A, Chen Z, Bresser D (2020) The success story of graphite as a lithium-ion anode material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain Energy Fuels 4:5387–5416. https://doi.org/10.1039/D0SE00175A

    Article  CAS  Google Scholar 

  8. Xin F, Whittingham MS (2020) Challenges and development of tin-based anode with high volumetric capacity for Li-ion batteries. Electrochem Energ Rev 3:643–655. https://doi.org/10.1007/s41918-020-00082-3

    Article  CAS  Google Scholar 

  9. Liu Y, Li W, Xia Y (2021) Recent progress in polyanionic anode materials for Li (Na)-ion batteries. Electrochem Energ Rev 4:447–472. https://doi.org/10.1007/s41918-021-00095-6

    Article  CAS  Google Scholar 

  10. Hwang J, Kim K, Jung WS, Choi H, Kim JH (2019) Facile and scalable synthesis of SiOx materials for Li-ion negative electrodes. J Power Sources 436:226883. https://doi.org/10.1016/j.jpowsour.2019.226883

    Article  CAS  Google Scholar 

  11. Jiao M, Wang Y, Ye C, Wang C, Zhang W, Liang C (2020) High-capacity SiOx (0 ≤ x ≤ 2) as promising anode materials for next generation lithium-ion batteries. J Alloys Compd 842:155774. https://doi.org/10.1016/j.jallcom.2020.155774

    Article  CAS  Google Scholar 

  12. Nulu A, Nulu V, Sohn KY (2020) Si/SiOx nanoparticles embedded in a conductive and durable carbon nanoflake matrix as an efficient anode for lithium-ion batteries. ChemElectroChem 7:4055–4065. https://doi.org/10.1002/celc.202001130

    Article  CAS  Google Scholar 

  13. Xu B, Shen H, Ge J, Tang Q (2021) Improved cycling performance of SiOx/MgO/Mg2SiO4/C composite anode materials for lithium-ion battery. Appl Surf Sci 546:148814. https://doi.org/10.1016/j.apsusc.2020.148814

    Article  CAS  Google Scholar 

  14. Geng Z, Zhao F, Yang B, Wang P, Zhang Z (2020) Preparation and electrochemical performance of ball milling SiOx/(Cu,Ni) anode materials for lithium–silicon batteries. J Mater Sci Mater Electron 31:11049–11058. https://doi.org/10.1007/s10854-020-03654-7

    Article  CAS  Google Scholar 

  15. Zhao H, Fu Y, Ling M, Jia Z, Song X, Chen Z, Lu J, Amine K, Liu G (2016) Conductive polymer binder-enabled SiO-SnxCoyCz anode for high-energy lithium-ion batteries. ACS Appl Mater Interfaces 8:13373–13377. https://doi.org/10.1021/acsami.6b00312

    Article  CAS  PubMed  Google Scholar 

  16. Ouyang P, Jin C, Xu G, Yang X, Liu B, Dan J, Chen J, Yue Z, Li X, Sun F, Sun X, Zhou L (2021) Novel SiOx/Cu3Si/Cu anode materials for lithium-ion batteries. Ceram Int 47:8868–8878. https://doi.org/10.1016/j.ceramint.2020.12.008

    Article  CAS  Google Scholar 

  17. Ren Y, Wu X, Li M (2016) Highly stable SiOx/multiwall carbon nanotube/N-doped carbon composite as anodes for lithium-ion batteries. Electrochim Acta 206:328–336. https://doi.org/10.1016/j.electacta.2016.04.161

    Article  CAS  Google Scholar 

  18. Lee SJ, Kim HJ, Hwang TH, Choi S, Park SH, Deniz E, Jung DS, Choi JW (2017) Delicate structural control of Si-SiOx-C composite via high-speed spray pyrolysis for Li-ion battery anodes. Nano Lett 17:1870–1876. https://doi.org/10.1021/acs.nanolett.6b05191

    Article  CAS  PubMed  Google Scholar 

  19. Yang HW, Lee DI, Kang N, Yoo JK, Myung ST, Kim J, Kim SJ (2018) Highly enhancement of the SiOx nanocomposite through Ti-doping and carbon-coating for high-performance Li-ion battery. J Power Sour 400:613–620. https://doi.org/10.1016/j.jpowsour.2018.08.065

    Article  CAS  Google Scholar 

  20. Firdauzha R, Hernandha H, Rath PC, Umesh B, Patra J, Huang CY, Wu WW, Dong QF, Li J, Chang JK (2021) Supercritical CO2-assisted SiOx/Carbon multi-layer coating on Si anode for lithium-ion batteries. Adv Funct Mater 31:2104135. https://doi.org/10.1002/adfm.202104135

    Article  CAS  Google Scholar 

  21. Zhao T, Meng Y, Yin H, Guo K, Ji R, Zhang G, Zhang Y (2020) Beneficial effect of green water-soluble binders on SiOx/graphite anode for lithium-ion batteries. Chem Phys Lett 742:137145. https://doi.org/10.1016/j.cplett.2020.137145

    Article  CAS  Google Scholar 

  22. He D, Li P, Wang W, Wan Q, Zhang J, Xi K, Ma X, Liu Z, Zhang L, Qu X (2020) Collaborative design of hollow nanocubes, in situ cross-linked binder, and amorphous void@SiOx@C as a three‐pronged strategy for ultrastable lithium storage. Small 16:1905736. https://doi.org/10.1002/smll.201905736

    Article  CAS  Google Scholar 

  23. Hu YS, Demir-Cakan R, Titirici MM, Müller JO, Schlögl R, Antonietti M, Maier J (2008) Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew Chem Int Ed 47:1645–1649. https://doi.org/10.1002/anie.200704287

    Article  CAS  Google Scholar 

  24. Ren Y, Li M (2016) Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance. J Power Sour 306:459–466. https://doi.org/10.1016/j.jpowsour.2015.12.064

    Article  CAS  Google Scholar 

  25. Song W, Qin Z, Duan B, Hong B, Liu Y, Hong S (2019) LiPO2F2 as a LiPF6 stablizer additive to improve the high temperature performance of the NCM811/SiOx@C battery. Int J Electrochem Sci 14:9069–9079. https://doi.org/10.20964/2019.09.55

    Article  CAS  Google Scholar 

  26. Liu G, Jiao T, Cheng Y, Zhou K, Zou Y, Wang M, Yang Y, Zheng J (2021) Interfacial enhancement of silicon-based anode by a lactam-type electrolyte additive. ACS Appl Energy Mater 4:10323–10332. https://doi.org/10.1021/acsaem.1c02265

    Article  CAS  Google Scholar 

  27. Jeon T, Lee S, Jung SC (2020) Boron-, nitrogen-, aluminum-, and phosphorus-doped graphite electrodes for non-lithium ion batteries. Curr Appl Phys 20:988–993. https://doi.org/10.1016/j.cap.2020.06.017

    Article  Google Scholar 

  28. Wang Q, Guo C, He J, Yang S, Liu Z, Wang Q (2019) Fe2O3/C-modified Si nanoparticles as anode material for high-performance lithium-ion batteries. J Alloys Compd 795:284–290. https://doi.org/10.1016/j.jallcom.2019.05.038

    Article  CAS  Google Scholar 

  29. Li Z, Zhao H, Lv P, Zhang Z, Zhang Y, Du Z, Teng Y, Zhao L, Zhu Z (2018) Watermelon-like structured SiOx-TiO2@C nanocomposite as a high‐performance lithium‐ion battery anode. Adv Funct Mater 28:1605711. https://doi.org/10.1002/adfm.201605711

    Article  CAS  Google Scholar 

  30. Sasidharachari K, Na BK, Woo SG, Yoon S, Cho KY (2016) Facile conductive surface modification of Si nanoparticle with nitrogen-doped carbon layers for lithium-ion batteries. J Solid State Electrochem 20:2873–2878. https://doi.org/10.1007/s10008-016-3291-7

    Article  CAS  Google Scholar 

  31. Fellinger TP, Su DS, Engenhorst M, Gautam D, Schlögl R, Antonietti M (2012) Thermolytic synthesis of graphitic boron carbon nitride from an ionic liquid precursor: mechanism, structure analysis and electronic properties. J Mater Chem 22:23996. https://doi.org/10.1039/c2jm34486f

    Article  CAS  Google Scholar 

  32. Yassin FA, Kady FYE, Ahmed HS, Mohamed LK, Shaban SA, Elfadaly AK (2015) Highly effective ionic liquids for biodiesel production from waste vegetable oils. Egypt J Pet 24:103–111. https://doi.org/10.1016/j.ejpe.2015.02.011

    Article  Google Scholar 

  33. Peng H, Mo Z, Liao S, Liang H, Yang L, Luo F, Song H, Zhong Y, Zhang B (2013) High performance Fe- and N-doped carbon catalyst with graphene structure for oxygen reduction. Sci Rep 3:1765. https://doi.org/10.1038/srep01765

    Article  CAS  PubMed Central  Google Scholar 

  34. Zolghadr S, Kimiagar S, Davarpanah AM (2017) Magnetic property of α-Fe2O3-GO nanocomposite. IEEE Trans Magn 53:2400306. https://doi.org/10.1109/TMAG.2017.2733503

    Article  Google Scholar 

  35. Rufus A, Sreeju N, Philip D (2016) Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv 6:94206–94217. https://doi.org/10.1039/c6ra20240c

    Article  CAS  Google Scholar 

  36. Xu X, Shi C, Li Q, Chen R, Chen T (2017) Fe–N-doped carbon foam nanosheets with embedded Fe2O3 nanoparticles for highly efficient oxygen reduction in both alkaline and acidic media. RSC Adv 7:14382–14388. https://doi.org/10.1039/c6ra27826d

    Article  CAS  Google Scholar 

  37. Yoo H, Park E, Bae J, Lee J, Chung DJ, Jo YN, Park MS, Kim JH, Dou SX, Kim YJ, Kim H (2018) Si nanocrystal-embedded SiOx nanofoils: two-dimensional nanotechnology-enabled high performance Li storage materials. Sci Rep 8:6904. https://doi.org/10.1038/s41598-018-25159-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pereira C, Pereira AM, Quaresma P, Tavares PB, Pereira E, Araújo JP, Freire C (2010) Superparamagnetic γ-Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of [VO(acac)2]. Dalton Trans 39:2842–2854. https://doi.org/10.1039/b920853d

    Article  CAS  PubMed  Google Scholar 

  39. Kitada K, Pecher O, Magusin PCMM, Groh MF, Weatherup RS, Grey CP (2019) Unraveling the reaction mechanisms of SiO anodes for Li-ion batteries by combining in situ7Li and ex situ7Li/29Si solid-state NMR spectroscopy. J Am Chem Soc 41:7014–7702. https://doi.org/10.1021/jacs.9b01589

    Article  CAS  Google Scholar 

  40. Kim T, Park S, Oh SM (2007) Solid-state NMR and electrochemical dilatometry study on Li+ uptake/extraction mechanism in SiO electrode. J Electrochem Soc 154:A1112–A1117. https://doi.org/10.1149/1.2790282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grant of the Kongju National University in 2020. This research was also supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0017012, Human Resource Development Program for Industrial Innovation).

Funding

Funding was provided by Kongju National University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuk Young Cho or Sukeun Yoon.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1378.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, A.S., Kim, J., Hwa, Y. et al. Fe2O3/N-doped carbon-modified SiOx particles via ionic liquid as anode materials for Li-ion batteries. J Appl Electrochem 52, 1163–1171 (2022). https://doi.org/10.1007/s10800-022-01700-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01700-2

Keywords

Navigation