Skip to main content

Advertisement

Log in

Facile synthesis and evaluation of MnCo2O4.5 nanoparticles as a bifunctional catalyst for zinc-air battery

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Despite the recent progress in Zn-air battery fabrication, the development of highly electroactive, non-precious-metal-based, and durable electrocatalysts for such batteries remains challenging. To address this issue, spinel-type MnCo2O4.5 nanoparticles (NPs) prepared by a solvothermal method followed by calcination were characterized by a range of instrumental techniques and employed in rechargeable Zn-air batteries to promote the oxygen reduction and oxygen evolution reactions. The bifunctional activity of the MnCo2O4.5 NPs was further evaluated by linear sweep voltammetry, which showed that both the reduction and oxidation current densities obtained in the presence of this catalyst exceed those observed with catalyst-free carbon. Moreover, the incorporation of the MnCo2O4.5 NPs into an air-breathing cathode resulted in a decreased charge–discharge voltage gap and improved round-trip efficiency. Therefore, these MnCo2O4.5 NPs are a highly beneficial and novel kind of bifunctional electrocatalyst for rechargeable Zn-air batteries.

Graphic abstract

Schematic illustration of solvothermal synthesis, bifunctional catalytic activity of MnCo2O4.5 nanoparticles for Zn-air batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun D, Jin G, Wang H, Huang X, Ren Y, Jiang J, He H, Tang Y (2014) LixV2O5/LiV3O8 nanoflakes with significantly improved electrochemical performance lithium-ion batteries. J Mater Chem A 2:8009–8016. https://doi.org/10.1039/c4ta00868e

    Article  CAS  Google Scholar 

  2. Sun D, Jin G, Wang H, Liu P, Ren Y, Jiang Y, Tang Y, Huang X (2014) Aqueous rechargeable lithium batteries using NaV6O15 nanoflakes as high-performance anodes. J Mater Chem A 2:12999–13005. https://doi.org/10.1039/c4ta01675k

    Article  CAS  Google Scholar 

  3. Du Z, Wood DL, Daniel C, Kalnaus S, Li J (2017) Understanding limiting factors in the thick electrode performance as applied to high energy density Li-ion batteries. J Appl Electrochem 47:405–415. https://doi.org/10.1007/s10800-017-1047-4

    Article  CAS  Google Scholar 

  4. Li X, Zhang Y, Su Z, Zhao Y, Zhao X, Wang R (2017) Graphene nanosheets as backbone to build a 3D conductive network for negative active materials of lead-acid batteries. J Appl Electrochem 47:619–630. https://doi.org/10.1007/s10800-017-1067-0

    Article  CAS  Google Scholar 

  5. Min YJ, Oh SJ, Kim MS, Choi JH, Eom S (2018) Effect of carbon properties on the electrochemical performance of carbon-based air electrodes for rechargeable zinc-air batteries. J Appl Electrochem 48:405–413. https://doi.org/10.1007/s10800-018-1173-7

    Article  CAS  Google Scholar 

  6. Davari E, Ivey DG (2017) Synthesis and electrochemical performance of manganese nitride as an oxygen reduction and oxygen evolution catalyst for zinc-air secondary batteries. J Appl Electrochem 47:815–827. https://doi.org/10.1007/s10800-017-1084-z

    Article  CAS  Google Scholar 

  7. Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H (2013) Advanced zinc-air batteries based on high-performance hybrid electrocatalyst. Nat Commun 4:1805. https://doi.org/10.1038/ncomms2812

    Article  CAS  PubMed  Google Scholar 

  8. Harnish F, Scholder U (2010) From MFC to MXC: chemical and biological cathode and their potential for microbial bioelectrochemical system. Chem Soc Rev 39:4433–4448. https://doi.org/10.1039/c003068f

    Article  CAS  Google Scholar 

  9. Lee JS, Kim ST, Cao R, Choi NS, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: lithium-air, versus Zn-air. Adv Energy Mater 1:34–50. https://doi.org/10.1002/aenm.201000010

    Article  CAS  Google Scholar 

  10. Zhang X, Wang XG, Xie Z, Zhou Z (2016) Recent progress in rechargeable alkali metal-air batteries. Green Energy Environ 1:4–17. https://doi.org/10.1016/j.gee.2016.04.004

    Article  Google Scholar 

  11. Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells. J Power Sources 180:683–694. https://doi.org/10.1016/j.jpowsour.2008.02.074

    Article  CAS  Google Scholar 

  12. Wang X, Wang J, Wang D, Dou S, Ma Z, Wu J, Tao L, Shen A, Ouyang C, Liu Q, Wang S (2014) One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chem Commun 50:4839–4842. https://doi.org/10.1039/c4cc00440j

    Article  CAS  Google Scholar 

  13. Gong K, Du F, Xi Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764. https://doi.org/10.1126/science.1168049

    Article  CAS  PubMed  Google Scholar 

  14. Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z (2011) Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed 50:7132–7135. https://doi.org/10.1126/science.1168049

    Article  CAS  Google Scholar 

  15. Xiao M, Zhu J, Feng L, Liu C, Xing W (2015) Meso/microporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv Mater 27:2521–2527. https://doi.org/10.1002/adma.201500262

    Article  CAS  PubMed  Google Scholar 

  16. Liu L, Zeng G, Chen J, Bi L, Dai L, When Z (2018) N-doped carbon nanosheets as pH universal ORR electrocatalyst in various fuel cell devices. Nano Energy 49:393–402. https://doi.org/10.1016/j.nanoen.2018.04.061

    Article  CAS  Google Scholar 

  17. Ye L, Chai G, Wen Z (2017) Zn-MOF-74-derived N-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction. Adv Funct Mater 27:1606190. https://doi.org/10.1002/adfm.201606190

    Article  CAS  Google Scholar 

  18. Park MS, Kim J, Kim KJ, Lee JW, Kim JH, Yamauchi Y (2015) Porous nanoarchitectures of spinel-type transitional metal oxides electrochemical energy storage systems. Phys Chem Chem Phys 17:30963–30977. https://doi.org/10.1039/c5cp05936d

    Article  CAS  PubMed  Google Scholar 

  19. Cai P, Huang J, Chen J, When Z (2017) Oxygen-incorporated amorphous cobalt sulfide porous nanotubes as a highly active electrocatalysts for the oxygen evolution reaction in alkaline/neutral medium. Angew Chem Int Ed 56:1–5. https://doi.org/10.1002/anie.201701280

    Article  CAS  Google Scholar 

  20. Osgood H, Devaguptapu SV, Xu H, Cho J, Wu G (2016) Transition metal (Fe Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 11:601–625. https://doi.org/10.1016/j.nantod.2016.09.001

    Article  CAS  Google Scholar 

  21. Ma C, Xu N, Qiao J, Jian S, Zhang J (2016) Facile synthesis of NiCo2O4 nanosphere-carbon nanotubes hybrid as an efficient bifunctional electrocatalyst for rechargeable Zn-air batteries. Int J Hydrog Energy 41:9211–9218. https://doi.org/10.1016/j.ijhydene.2015.125.022

    Article  CAS  Google Scholar 

  22. Wang X, Li Y, Jin T, Meng J, Jiao L, Zhu M, Chen J (2017) Electrospun thin-walled CuCo2O4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Nano Lett 17:7989–7994. https://doi.org/10.1021/acs.nanolett.7b04502

    Article  CAS  PubMed  Google Scholar 

  23. Liu ZQ, Cheng H, Li N, Ma TY, Su YZ (2016) ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv Mater 28:3777–3784. https://doi.org/10.1002/adma.201506197

    Article  CAS  PubMed  Google Scholar 

  24. Prabu M, Ramakrishnan P, Nara H, Momma T, Osaka T, Shanmugam S (2014) Zn-air battery: understanding the structure and morphology changes of graphene-supported CoMn2O4 bifunctional catalysts under practical rechargeable conditions. ACS Appl Mater Interfaces 6:16545–16555. https://doi.org/10.1021/am5047476

    Article  CAS  PubMed  Google Scholar 

  25. Yuvaraj S, Vignesh A, Shanmugam S, Selvan RK (2016) Nitrogen-doped multi-walled carbon nanotubes-MnCo2O4 microsphere as electrocatalyst for efficient oxygen reduction reaction. Int J Hydrog Energy 41:15199–15207. https://doi.org/10.1016/j.ijhydene.2016.06.115

    Article  CAS  Google Scholar 

  26. Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J (2011) Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem 3:79–84. https://doi.org/10.1038/nchem.931

    Article  CAS  PubMed  Google Scholar 

  27. Zhao T, Gadipelli S, He G, Ward MJ, Do D, Zhang P, Guo Z (2018) Tunable bifunctional activity of MnxCo3−xO4 nanocrystals decorated on carbon nanotubes for oxygen electrocatalysis. ChemSusChem 11:1295–1304. https://doi.org/10.1002/cssc.201800049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ge X, Liu Y, Thomas Goh FW, Andy Hor TS, Zong Y, Xiao P, Zhang Z, Lim SH, Li B, Wang X, Liu Z (2014) Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl Mater Interfaces 6:12684–12691. https://doi.org/10.1021/am502675c

    Article  CAS  PubMed  Google Scholar 

  29. Li G, Li L, Shi J, Yuan Y, Li Y, Zhao Z, Shi J (2014) One-pot pyrolytic synthesis of mesoporous MnCo2O4 (M = Mn, Ni, Fe, Cu) spinels and its highly efficient high electrocatalytic properties for CO oxidation at low temperature. J Mol Catal Chem 390:97–104. https://doi.org/10.1016/j.molcat.2014.03.012

    Article  CAS  Google Scholar 

  30. Yang W, Hao J, Zhang Z, Lu B, Zhang B, Tang J (2014) Synthesis of hierarchical MnCo2O4.5 nanostructure modified MnOOH nanorods for catalytic degradation of methylene blue. Catal Commun 46:174–178. https://doi.org/10.1016/j.catcom.2013.12.018

    Article  CAS  Google Scholar 

  31. Gao M, Lu X, Nie G, Chi M, Wang C (2017) Hierarchical CNFs/MnCo2O4.5 nanofibers a highly active oxidation mimetic and its application in biosensing. Nanotechnology 28:485708. https://doi.org/10.1088/1361-6528/aa9135

    Article  CAS  PubMed  Google Scholar 

  32. Hu X, Zhang S, Li X, Sun X, Cai S, Ji H, Hou F, Zheng C, Hu W (2017) Large-scale and template free synthesis of hierarchically porous MnCo2O4.5 as an anode material for lithium-ion batteries with enhanced electrochemical performance. J Mater Sci 52:5268–5282. https://doi.org/10.1007/s10853-017-0767-5

    Article  CAS  Google Scholar 

  33. Liao F, Han X, Zhan Y, Xu C, Chen H (2018) Solvothermal synthesis of porous MnCo2O4.5 spindle-like microstructure as high-performance electrode material for supercapacitors. Ceram Int 44:22622–22631. https://doi.org/10.1016/j.ceramint.2018.09.038

    Article  CAS  Google Scholar 

  34. Bai Z, Heng J, Zhang Q, Yang L, Chang F (2018) Rational design of dodecahedral MnCo2O4.5 hollowed-out nanocages as efficient bifunctional electrocatalyst for oxygen reduction and evolution. Adv Energy Mater 8:1802390. https://doi.org/10.1002/aenm.201802390

    Article  CAS  Google Scholar 

  35. Bazuev GV, Korolyov AV (2008) Magnetic behavior of MnCo2O4.5+δ spinel obtained by thermal decomposition of binary oxalates. J Magn Magn Mater 320:2262–2268. https://doi.org/10.1016/j.jmmm.2008.04.123

    Article  CAS  Google Scholar 

  36. Jung KN, Jung JH, Im WB, Yoon S, Shin KH, Lee JW (2013) Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries. ACS Appl Mater Interfaces 5:9902–9907. https://doi.org/10.1021/am403244k

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Zhou N, Wang H, Li H, Xie Z, Chu H, Tang Y, Sun L, Peng Z (2015) Three-dimensional MnCo2O4.5 mesoporous network as an electrocatalyst for oxygen reduction reaction. J Electrochem Soc 162:A2302–A2307. https://doi.org/10.1149/2.0471512jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIP, Nos. 2015R1C1A1A01051733 and 2018R1C1B6004689).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sukeun Yoon or Kuk Young Cho.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasidharachari, K., Yoon, S. & Cho, K.Y. Facile synthesis and evaluation of MnCo2O4.5 nanoparticles as a bifunctional catalyst for zinc-air battery. J Appl Electrochem 50, 907–915 (2020). https://doi.org/10.1007/s10800-020-01432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01432-1

Keywords

Navigation